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Abstract. We investigate the stability domains of ground states of generalized Hubbard models with next-
nearest neighbour interaction using the optimum groundstate approach. We focus on the η-pairing state
with momentum P = 0 and the fully polarized ferromagnetic state at half-filling. For these states exact
lower bounds for the regions of stability are obtained in the form of inequalities between the interaction
parameters. For the model with only nearest neighbour interaction we show that the bounds for the stability
regions can be improved by considering larger clusters. Additional next-nearest neighbour interactions can
lead to larger or smaller stability regions depending on the parameter values.

PACS. 75.10.Lp Band and itinerant models – 74.20.-z Theories and models of superconducting state

1 Introduction

Correlation effects are of great importance in condensed
matter physics. Superconductivity and ferromagnetism
are two important phenomena which can arise in an inter-
acting many-body system. Theoretical investigations usu-
ally begin with choosing a suitable Hamiltonian. In general
this Hamiltonian is too complex and must be reduced to a
reasonable model which gives only a simplified description
of reality. Such simplifications make it even more desirable
to obtain exact results and compare these with experimen-
tal data. In addition, they can be used to check the results
from computer simulations and approximative methods.

The simplest model of correlated electrons was in-
troduced independently by Hubbard, Gutzwiller and
Kanamori in 1963 as an attempt to describe the effect of
correlations for d-electrons in transition metals [1–3]. This
model consists of two terms, one describes discrete quan-
tum mechanical motion of electrons (hopping) and the
other one the on-site Coulomb interaction between elec-
trons. Nevertheless, the Hubbard model is one of the most
important models in theoretical physics and is believed to
exhibit various phenomena including metal-insulator tran-
sition, ferromagnetism, antiferromagnetism and supercon-
ductivity. In spite of its simplicity only a few exact re-
sults are known. For instance, Lieb and Wu solved the
one-dimensional (D = 1) model by using Bethe-Ansatz-
technique [4]. The other class of exact solutions belongs to
the limiting case D = ∞, where a dynamical mean-field
approximation becomes exact [5,6]. However, the situa-
tion becomes much more complicated in the lower dimen-
sional cases.
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In recent years a new, non-pertubative method was de-
veloped by Brandt and Giesekus [7]. The main idea is to
start with a well-known ground state and then construct
a corresponding Hamiltonian in the form of a projection
operator. This approach permits to include a large class
of interaction parameters. A generalization of this method
was presented by Strack and Vollhardt [8,9]. Ovchinnikov
improved some of the results obtained previously by us-
ing a different method [10] (see also [11]). His approach is
based on Gerschgorin‘s theorem which gives a lower bound
for the ground state energy of the Hamiltonian and thus
complements the usual variational principle which gives
upper bounds. A much simpler and clearer method was
used by de Boer and Schadschneider [12]. This method
is called Optimum Groundstate Approach and was intro-
duced by Klümper, Schadschneider and Zittartz for spin
models [13]. The basic idea is to diagonalize a specially
chosen local Hamiltonian and to make all the local states
which are needed for the construction of a given global
ground state also local ground states by choosing the in-
teraction parameters appropriately. This approach leads
to some inequalities between the interaction parameters
which represent the minimal stability region of the investi-
gated ground state. Due to this restriction only a subspace
of the parameter space can be examined.

Using a larger local Hamiltonian enables in a natural
way the inclusion of more interactions which determine
the stability conditions. In general, one finds an extension
of the stability domain of the ground state. Independently,
Szabó took this into account and improved some results
obtained previously [14]. Additionally, he examined the
behaviour of the stability domain in the presence of next-
nearest neighbour interaction parameters. For instance,
in the case of η-pairing state with momentum P = π he
verified a shrinking of the stability region for a small ratio
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between nearest and next-nearest neighbour hopping. In
contrast to his numerical approach we shall investigate
various ground states using analytical calculations.

2 Method

A Hamiltonian of a many-body system on an arbitrary
lattice but with homogeneous α-nearest neighbour in-
teraction can be split up into local Hamiltonians, e.g.
H =

∑
� h�. The minimal cluster � consists of only two

nearest (α = 1) neighbour lattice sites 〈ij〉 and the cor-
responding local Hamiltonian is called bond Hamiltonian.
The largest cluster contains obviously all lattice sites and
can be expressed by h� = H. For small clusters� the local
Hamiltonian h� can be diagonalized exactly. This limits
the tractable cluster size. By adding a trivial constant to
the Hamiltonian H, which never changes the physics, one
can achieve that the lowest eigenvalue e0 of h� vanishes,
i.e. e0 = 0. In this case the lowest eigenvalue E0 of H
is either positive (E0 > 0) or zero (E0 = 0), because h�
is a positive-semidefinite operator and the sum of such
operators is also positive semidefinite. In the special case
E0 = 0 a local condition for finding a ground state |Ψ0〉
exists:

H|Ψ0〉 = 0 ⇐⇒ h�|Ψ0〉 = 0 (for all �). (1)

This equivalence can be understood by considering∑
�〈Ψ0|h�|Ψ0〉 = 〈Ψ0|H|Ψ0〉 = 0. Since the h� are

positive-semidefinite, all 〈Ψ0|h�|Ψ0〉 must vanish, which
in turn implies (1). In the case E0 = 0, the global ground
state consists only of ground states of the local Hamil-
tonian and no excited local states are involved. A ground
state of this type is called optimum ground state. To obtain
such ground states for a given system one must perform
two steps. First, the ground states of the local Hamilto-
nian must be determined. Then one has to check whether
a global ground state can be formed using only these local
ground states.

3 The generalized Hubbard model

The Hamiltonian of the generalized Hubbard-Model on a
D-dimensional, hypercubic lattice with L sites and homo-
geneous α-nearest neighbour interaction can be split up
into local Hamiltonians h(α)

ij . Due to homogeneity all local
Hamiltonians are equal and can be divided into two parts.
The first part contains hopping and interaction terms:

h
(α)
ij =− tα

∑
σ

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ)

+Xα

∑
σ

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ)(n̂i,−σ + n̂j,−σ)

+ Yα(ĉ†i↑ĉ
†
i↓ĉj↓ĉj↑ + ĉ†j↑ĉ

†
j↓ĉi↓ĉi↑)

+
Jxyα
2
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i Ŝ
−
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−
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z
i Ŝ
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Fig. 1. Covering of 3-site clusters on a square lattice. In order
to obtain the full lattice including next-nearest neighbour in-
teraction (diagonal bonds) one has to cover the lattice with two
different 3-site clusters, namely triangle of type “lij” (upper
part) and “ijk” (lower part).

where the pairs (ij) denote α-nearest neighbours, for in-
stance nearest (α = 1) and next-nearest (α = 2) neigh-
bours. The fermion operators ĉ†iσ and ĉiσ create and an-
nihilate electrons with spin σ ∈ {↑, ↓} at site i which is
associated with the single tight-binding Wannier orbital.
The corresponding number operators are n̂iσ = ĉ†iσ ĉiσ and
n̂i = n̂i↑ + n̂i↓. The SU(2) spin operators are given by
Ŝzi = (n̂i↑ − n̂i↓)/2, Ŝ−i = ĉ†i↓ĉi↑ and Ŝ+

i = ĉ†i↑ĉi↓. The
physical nature of the various terms is as follows: The
first term (t) is the usual hopping of fermions on a lat-
tice. The next two terms, bond-charge interaction (X)
and pair-hopping (Y ), were studied in relation with su-
perconductivity [15–17]. The fourth term is an anisotropic
Heisenberg term with a XXZ-type spin interaction given
by the exchange constants Jxy and Jz. The last term (V )
is known as the α-nearest neighbour Coulomb interaction.
Estimates for the values of the couplings (for metals) for
example can already be found in Hubbard‘s original pa-
per [1].
The second term contains only on-site interactions Oij =
Oi +Oj with

Oi =
U

Z
(n̂i↑ − 1/2)(n̂i↓ − 1/2) +

µ

Z
n̂i. (3)

Here U is the on-site Coulomb interaction, µ the chem-
ical potential and Z the coordination number of nearest
neighbour sites on the D-dimensional hypercubic lattice.
A local Hamiltonian h� can be divided into bond Hamil-
tonians such that a comparison with the results obtained
in [12] is possible. We restrict our extension to cluster sizes
N(�) = {3, 4} and call the corresponding local Hamilto-
nians 3- and 4-site Hamiltonian. In this case only nearest
(α = 1) and next-nearest (α = 2) neighbour interactions
exist on the square lattice and therefore:

h� :=
1
F

∑
〈ij〉1∈�

(
h

(1)
ij +Oij

)
+

∑
〈ij〉2∈�

h
(2)
ij . (4)

The factor F := 2(D − 1) for D > 1 is only neces-
sary in order to compare results of different clusters
without rescaling the coupling constants (due to mul-
tiple counts of bonds). Figure 1 shows the covering
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Table 1. Block sizes and number of blocks for the 3-site Hamil-
tonian.

X 6= t X = t
number block size number block size

4 1× 1 4 1× 1
8 3× 3 12 3× 3
4 9× 9 4 6× 6

of 3-site clusters on a square lattice. The entries of a
local state are described by ξ ∈ {0, ↑, ↓, 2}, where ‘0’
denotes an empty site, σ ∈ {↑, ↓} a site occupied by
one electron with spin σ and ‘2’ a doubly occupied site.
The local state of cluster size N(�) is a tensor product
|ξ1ξ2 . . . ξN(�)〉 = |ξ1〉 ⊗ |ξ2〉 ⊗ · · · ⊗ |ξN(�)〉. Together
one gets 4N(�) local states and a 4N(�) × 4N(�)-matrix
which represents the local Hamiltonian. Although this
matrix might be very large, the number of zero elements
is still a large number. The use of symmetries makes
the problem more tractable. One of the simplest sym-
metries is associated with the conservation of the total
number of electrons. One has to consider only subspaces
corresponding to a fixed number of electrons, i.e. one
gets a block diagonal matrix. Another useful condition
which we shall frequently impose is X = t. It leads to
the preservation of the number of doubly occupied sites
(see e.g. [8,18]) and thus some of the block matrices split
into smaller ones. Table 1 summarizes the results for
the 3-site Hamiltonian with corresponding 64×64-matrix.

However, the determination of algebraic eigenvalues
of a characteristic polynomial p(λ) = det(M − λI) is
limited, i.e. only polynomials up to fourth degree can be
solved in closed form. In the case X = t it is possible to
find a convenient transformation with a corresponding
matrix T. After the transformation T−1MT = M the
four 6 × 6-matrices decay into blocks of size 3 and all
eigenvalues can be obtained in closed form. This is the
main reason why we concentrate here on the case X = t.

4 Results

We shall restrict our discussion in the following to two
physically interesting classes of states. The first class are
the η-pairing states with momentum P which show off-
diagonal long-range order (ODLRO) and are thus super-
conducting [19]. The second one is the fully polarized fer-
romagnetic state at half-filling. We determine under which
circumstances these states are optimum ground states of
the generalized Hubbard model. We shall mainly consider
the square lattice (D = 2).
The definition of an η-pairing state with momentum P is
given by the expression

|η〉 =
(
η†P

)N
|0〉 with η†P =

L∑
j=1

eiPj ĉ†j↓ĉ
†
j↑, (5)

whereN is an integer which is related to the particle num-
berN throughN = N/2. Since we would like the η-pairing

state to be the ground state of the global Hamiltonian it is
informative to determine the commutator [H, η†P ]. A long,
but straightforward calculation yields:

[H, η†P ] =
2∑

α=1

2(Xα − tα)

×
∑
〈jk〉α

(
eiPj + eiPk

)
(ĉ†j↓ ĉ

†
k↑ + ĉ†k↓ĉ

†
j↑)

+ 2Xα

∑
〈jk〉α

(
eiPj − eiPk

)
×
(

(n̂k↑ − n̂j↓)ĉ†j↓ĉ
†
k↑ + (n̂k↓ − n̂j↑)ĉ†k↓ĉ

†
j↑

)
+
∑
〈jk〉α

(
Yα
2

eiPj − VαeiPk

)
(n̂j − 1)ĉ†k↑ĉ

†
k↓

+
∑
〈jk〉α

(
Yα
2

eiPk − VαeiPj

)
(n̂k − 1)ĉ†j↑ĉ

†
j↓

− 2µη†P . (6)

Using (6) one finds the conditions under which the
η−pairing states (5) are eigenstates of H. For the mo-
menta P ∈ {0, π} we have the following constraints on
the interaction constants:

P = 0 P = π
Xα = tα X2 = t2
Yα = 2Vα Yα = (−1)α2Vα

Note that for momentum P = π no conditions relating
t1 to X1 exist. In the following we shall only consider the
P = 0 case. Other values of the momenta can be treated
similarly. An investigation of the properties of these states
can be found e.g. in [18].

In order to make the η-pairing state (with momentum
P = 0) an optimum ground state we first observe that |η〉
can be built completely from the local 3-site states |000〉,
|222〉, |002〉+ |200〉+ |020〉 and |022〉+ |220〉+ |202〉 and
analogous 4-site states. Without next-nearest neighbour
interactions all local states have the same local energy
e0 = U/(2Z)+V if we set µ = 0. Demanding that e0 is the
local ground state energy and hence all other local energies
must be larger, one obtains the following inequalities:

V ≤ 0,
U

Z
≤ min

{
B

(n)
1 , B

(n)
2 , B

(n)
3 , B

(n)
4 , . . .

}
(n = 3 , 4 )

B
(3 ,4 )
1 := −2|t| − 2V

B
(3 ,4 )
2 := −V +

Jz

4

B
(3 ,4 )
3 := −V +

1
8

(
−Jz −

√
(Jz)2 + 8(Jxy)2

)
B

(3 )
4 :=

1
3

(
−5V − Jz

4
− |J

xy|
2

−1
4

√
(4V − Jz − 2|Jxy|)2 + 192t2

)
.

(7)
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Fig. 2. Stability region of the η-pairing state with momentum
P = 0 in the Jz − Jxy cut in units of |t| for different cluster
sizes.
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Fig. 3. A U − V cut for the η-pairing state with momentum
P = 0 in units of |t|.

These inequalities represent the stability regions for the
η-pairing state with momentum P = 0. The selected1

bounds B
(n)
j belong to the 3-site and/or 4-site case and

can be distinguished by the upper index n. There are seven

1 We have listed in (4) only those bounds which are relevant

for Figures 2 and 3. A complete list of the bounds B
(3)
j can be

found in the appendix. The bounds B
(4)
j can be found in [20].

bounds for n = 3 and more than 50 for n = 4 . The
first two bounds were also obtained by using the bond-
diagonalization [12]. The other bounds are new and indi-
cate an improvement of the stability region.
It is possible to investigate all cuts of the parameter space
(t, U, V, Jz, Jxy), but we shall concentrate only on some
of them. For all cuts we took realistic parameter values
satisfying U ≥ V ≥ t ≥ Jz ≥ Jxy.
In the Jz − Jxy cut of the parameter space (Fig. 2) the
inner triangle corresponds to the stability region of the
η-pairing state with momentum P = 0 obtained by bond-
diagonalization. The enlargement corresponds to results
achieved by the 3-site Hamiltonian (including purely near-
est neighbour interaction). The 4-site Hamiltonian yields
no further improvement of the bounds. However, it is not
clear that the η-pairing state is not a ground state out-
side of those bounds since larger cluster sizes might yield
a further enlargement of the stability region. In contrast
to the last figure the following U −V cut (Fig. 3) displays
also an enhancement achieved by 4-site diagonalization.
The inclusion of next-nearest neighbour interactions mod-
ifies the local ground state energy e0 = U/(2Z) + V1 +
V2 and hence the constraints concerning the interaction
parameters:

V1 ≤ −4V2,
U

Z
≤ min {B1, B2, B3, B4, . . . }

B1 := −V1 − V2 +
1

4
(Jz1 + Jz2 )

B2 := 2

�
−t2 − V1 − V2 −

q
(t2 + V2)2 + t21

�

B3 :=
1

8
(−8 (V1 + V2)− Jz1 + 2Jxy2

−
q

(Jz1 − 2Jz2 + 2Jxy2 )2 + 8(Jxy1 )2

�

B4 :=
1

3
(−2|t2| − 5 (V1 + V2)

+
1

4
(Jz1 − 3Jz2 ) +

1

2
(Jxy1 + 3Jxy2 )

�
− 1

12

×
q

(−8|t2|+4(V1+V2)− Jz1 +3Jz2 +2Jxy1 −6Jxy2 )2+192t21.

(8)

These bounds belong to the 3-site diagonalization results
since larger clusters cannot be diagonalized analytically in
closed form. In order to be close to real systems we take
smaller next-nearest neighbour parameters than corre-
sponding nearest neighbour ones and express this through
ratios rP := P1/P2 with Pα ∈ {tα, Vα, Jzα, Jxyα }. The ratios
depend on the material and hence can be very different.
Since the η-pairing states with momentum P = 0 consist
of electron pairs it is interesting to consider the Y1−Y2 cut
(Fig. 4). This cut represents the behaviour of the stability
region for different on-site Coulomb interaction param-
eters U . All other parameter pairs have the same ratio
rP = 3. Note that on the square lattice the numbers of
nearest and next-nearest neighbours are exactly the same.
One important observation is that the two parameters Y1

and Y2 stabilize the ground state with increasing Coulomb
repulsion (U > 0) which try to seperate the electron pairs.
The fully polarized ferromagnetic state is a simple tensor
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product of local states

|F 〉 =
L∏
i=1

ĉ†i↑|0〉, (9)

where each lattice site is occupied by an electron with spin
σ = ↑ (at half-filling2). In contrast to the η-pairing state
this state is already an eigenstate of our Hamiltonian and
hence there are no restrictions concerning the parameters.
Nevertheless, we concentrate on the special case3 X = t. If
we want |F 〉 to become an optimum ground state we have
to make |σσσ〉 or |σσσσ〉 the local ground state. Without
next-nearest neighbour interaction the corresponding local
energy e0 = −U/(2Z) +Jz/4− 2µ/Z is a lower bound for
the other local energies leading to the inequalities:

Jz ≤ −|Jxy|,
U

Z
≥ max

{
B

(n)
1 , B

(n)
2 , B

(n)
3 , . . .

}
(n = 3 , 4 )

B
(3 ,4 )
1 := 2|t|+ Jz

2
+

2|µ|
Z

B
(3 ,4 )
2 := −V +

Jz

4
− 2|µ|

Z

B
(3 )
3 :=

1
2

V +
Jz

2
+
|µ|
Z

+

√(
V +

|µ|
2

)2

+ 2Y 2


B

(4 )
3 :=

1
2

(
V +

Jz

2
+
√
V 2 + 2Y 2

)
.

(10)

The first two boundaries are the same as those of the bond-
results [12], the last ones are new. Hence an improvement
of the ground state region might be obtained by consid-
ering the last two bounds. But the number of all possible
two dimensional cuts is still very large.

The bounds can be further improved using the follow-
ing argument [12]. With a fixed particle number N a state
is a ground state of H but also a ground state of H+µN .
In this situation one can regard the bounds as a function
of µ and try to find the value of µ which optimizes these
bounds. For instance, if we have inequalities like a ≥ b+µ
and a ≥ c − µ then the best value is µ = (c − b)/2 and
thus a ≥ (b+ c)/2. In our case we get µ = 0 and therefore
B

(3 )
3 = B

(4 )
3 . This leads to the cognition that only the 3-

site diagonalization is necessary, and the inclusion of four
local lattice sites does not improve the stability region.
This result is shown in [20] for various two dimensional
cuts of the parameter space. With next-nearest neighbour
interaction parameters we get the modified local energy
e0 = −U/(2Z) + Jz1 /4 + Jz2 /4 with the corresponding

2 Away from half-filling the ferromagnetic state is no opti-
mum ground state.

3 For X 6= t one has to rely on numerical methods. Prelimi-
nary results show a behaviour similar to the case X = t.
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Fig. 4. A Y1−Y2 cut for the bounds of the η-pairing state with
momentum P = 0 with non-zero next-nearest neighbour inter-
actions. The stability domains are shown for different values
of U .

new inequalities:

Jz1 ≤ −2 (Jz2 + Jxy2 ) , (Jz1 )2 − (Jxy1 )2 ≤ −2 (Jz2 − Jxy2 ) Jz1 ,

U

Z
≥ max {B1, B2, B3, B4, . . . }

B1 := −V1 − V2 +
1

4
(Jz1 + Jz2 )

B2 := 2t2 +
1

2
(Jz1 + Jz2 ) +

1

2

q
(4t2 + Jz2 )2 + 16t21

B3 :=
1

2
V1 −

1

2
Y2 +

1

4
(Jz1 + Jz2 )

+
1

2

q
(V1 + Y2)2 + 2Y 2

1 − 4V2 (V1 + Y2 − V2)

B4 := 2t2 + Jz1 + Jz2 −
1

2
(Jxy1 + Jxy2 ) +

1

2

×
q

(4t2 + Jxy2 )2+(Jz1−J
xy
1 )(Jz1−J

xy
1 +2Jxy2 +8t2)+16t21.

(11)

The pure Hubbard model H = H(t1, U) exhibits no ferro-
magnetic ground state at half-filling. Only for some spe-
cial cases like the Nagaoka case [21] the existence of a fully
polarized ferromagnetic ground state can be proven. An
extension to the case of the generalized Hubbard model
can be found in [22]. The influence of long range hopping
tα on ferromagnetism (at half-filling) was investigated e.g.
by Farkašovský [23]. The results show a suppression of fer-
romagnetism with increasing α. In the U − t1 cut (Fig. 5)
we considered the behaviour of the stability region for dif-
ferent t2 values. But in contrast to [23] all other type of
couplings were not turned off. The inclusion of the next-
nearest neighbour hopping shows a reduction of the stabil-
ity region for the ferromagnetic ground state in agreement
with the results of [23].
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Fig. 5. Bounds for the stability region of the ferromagnetic
state in the U−t1 plane for different values of the next-nearest
neighbour hopping t2.

5 Conclusions

We have presented exact results for stability regions of
two physically interesting ground states of the generalized
Hubbard model with nearest and next-nearest neighbour
interaction using the optimum ground state approach.
First we looked at the η-pairing state with momentum
P = 0 and then at the fully polarized ferromagnetic state
at half-filling. We have studied the behaviour of the sta-
bility domains of these two states with increasing clus-
ter size. But due to difficulties that emerge for analytical
diagonalization, we have limited our analytical calcula-
tions to two cluster sizes, i.e. N(�) = {3, 4}. These clus-
ter Hamiltonians were divided into bond Hamiltonians so
that a comparison with results obtained by bond diagonal-
ization [12] was possible. The new boundaries which ex-
hibit an improvement were illustrated graphically in some
chosen cuts of the parameter space. Without next-nearest
neighbour interactions all cuts show an enlargement of the
stability domains obtained by 3-site diagonalization. The
extension to four lattice sites only have led to an amplifi-
cation in the U−V cut, and all other cuts indicated a fast
convergence of the stability regions. We expect that any
further improvement is rapidly decreasing with increasing
cluster size. Another aim of this work was to determine the
effects of next-nearest neighbour interactions on the sta-
bility domains. However, we restricted our investigation to
the 3-site case only. The illustration of these bounds indi-
cates that the stability conditions are strongly dependent
on the next-nearest neighbour parameters. For instance,
in the ferromagnetic case one finds a reduction of the sta-
bility domain (U − t1 cut) in the presence of next-nearest
neighbour hopping t2. In the case of the η-pairing state
with momentum P = 0 we considered the Y1 − Y2 cut
for different values of the on-site Coulomb interaction U .
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Fig. 6. Phase diagram of the generalized Hubbard model with
nearest neighbour interactions only.

With increasing Coulomb repulsion (U > 0) which tries
to separate the electron pairs we observed a stabilization
of the domain because of large negative Y1 values.

In summary, we have shown that a cluster of three and
four lattice sites can be treated (with some restrictions)
analytically whereby every two-dimensional cut of the
whole parameter space can immediately be examined and
does not require long numerical calculations. Although
we restricted ourselves mainly to the case X = t, where
the local Hamiltonian decays into small blocks which can
be diagonalized in closed form, we like to stress that the
optimum ground state approach can be used to treat the
general case X 6= t as well. Here one can either diagonalize
the larger block matrices numerically [14] or combine
the optimum ground state method with the Gerschgorin
approach of [10]. Instead of determining the eigenvalues
of the larger matrices exactly one can obtain lower
bounds in closed form by using Gerschgorin’s theorem.
Although these bounds will in general not be the best
possible ones they still yield exact stability regions for
the state under consideration. The results give valuable
information about the phase diagram. In Figure 6 the
stability regions of the two states investigated here are
shown for a generalized Hubbard model with only nearest
neighbour interactions. For the parameter values chosen
one already knows a considerable part of the phase
diagram. These results might serve as a guidance for
further computer simulations or exact diagonalization
studies. Apart from this aspect, the extension enables
some interesting new investigations due to the inclusion
of more correlations.

We like to thank Jan de Boer and Zsolt Szabó for helpful dis-
cussions.
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Appendix

To obtain an optimum ground state for a given system
one has to determine all local eigenvalues. For instance,
in the 3-site case (with µ = 0, Xα = tα and next-nearest
neighbour interaction) the eigenvalues have the form:

e1 :=
U

2Z
+ V1 + V2,

e2 := − U

2Z
+
Jz1
4

+
Jz2
4
,

e3 :=
U

4Z
+ t2 +

V1

2
,

e4 :=
U

2Z
− V2 − Y2,

e5 := − U

4Z
+ t2 +

Jz1
8
,

e6 := − U

2Z
− Jz2

4
− Jxy2

2
,

e7,8 := − U

4Z
± t2 −

Jz1
8
± Jxy1

4
,

e9 :=
U

2Z
− V1

2
+
Y2

2

− 1

2

q
(V1 − 2V2 + Y2)2 + 2Y 2

1 ,

e10 := − U

2Z
− Jz1

8
+
Jxy2

4

− 1

8

q
(Jz1 − 2Jz2 + 2Jxy2 )2 + 8(Jxy1 )2,

e11 :=
U

8Z
− t2

2
+
V1

4
+
V2

2

− 1

8

s�
−U
Z

+ 4t2 − 2V1 + 4V2

�2

+ 32t21,

e12 := − U

8Z
− t2

2
+
Jz1
16

+
Jz2
8

− 1

16

s�
2U

Z
+ 8t2 − Jz1 + 2Jz2

�2

+ 128t21,

e13,14 := − U

8Z
∓ t2

2
− Jz1

16
− Jz2

8
± Jxy1

8
± Jxy2

4

− 1

16

s�
±2U

Z
+ 8t2 ± Jz1 ∓ 2Jz2 − 2Jxy1 + 4Jxy2

�2

+ 128t21,

e15,16 := 2Ω cos

�
θ

3

�
− 1

3

�
U

4Z
± 2t2 ∓ Y2 −

V1

2
− V2

�
,

e17,18 := 2Ω cos

�
θ + 2π

3

�

− 1

3

�
U

4Z
± 2t2 ∓ Y2 −

V1

2
− V2

�
,

e19,20 := 2Ω cos

�
θ + 4π

3

�

− 1

3

�
U

4Z
± 2t2 ∓ Y2 −

V1

2
− V2

�
.

The expressions of the functions Ω and θ, which include
the interaction terms, are to large and hence are omitted.

The bounds are derived from the inequalities e0 ≤ ei (for
all i). For the η-paring state with P = 0 one has e(η)

0 =
e1. It becomes an optimum ground state if the conditions
V ≤ 0 and U/Z ≤ min{B1, . . . ,B7} are satisfied, where

B
(3 )
1 = −2|t| − 2V,

B
(3 )
2 = −V +

Jz

4
,

B
(3 )
3 = −V − Jz

8
− 1

8

√
(Jz)2 + 8(Jxy)2,

B
(3 )
4 =

1
3

(
−5V − Jz

4
− |J

xy|
2

−1
4

√
(4V − Jz − 2|Jxy|)2 + 192t2

)
,

B
(3 )
5 =

1
6

(−8V + Jz) ,

B
(3 )
6 =

1
6

(−8V − Jz + 2|Jxy|) ,

B
(3 )
7 =

1
3

(
−5V − Jz

4
− 1

4

√
(4V + Jz)2 + 192t2

)
.

Due to the complexity of the last six eigenvalues (e15 - e20)
the corresponding bounds do not exist in “closed form”,
but numerical investigations show that they are irrelevant.
Including also next-nearest neighbour terms one gets:

B1 = −V1 − V2 +
1

4
(Jz1 + Jz2 ),

B2 = 2

�
−t2 − V1 − V2 −

q
(t2 + V2)2 + t21

�
,

B3 =
1

8
(−8(V1 + V2)− Jz1 + 2Jxy2

−
q

(Jz1−2Jz2 +2Jxy2 )2+8(Jxy1 )2),

B4 = −2t2
3
− 5

3
(V1+V2)

− 1

12
(Jz1 + 3Jz2 ) +

1

6
(Jxy1 + 3Jxy2 )− 1

12

×
q

(8t2−4(V1+V2)+Jz1−3Jz2−2Jxy1 +6Jxy2 )2+192t21,

B5 =
2t2
3
− 5

3
(V1+V2)− 1

12
(Jz1 +3Jz2 )− 1

6
(Jxy1 +3Jxy2 )− 1

12

×
q

(8t2+4(V1+V2)−Jz1 +3Jz2−2Jxy1 +6Jxy2 )2+192t21,

B6 = 4t2 − 2V1 − 4V2,

B7 = −V1 − V2 −
1

4
(Jz2 + 2Jxy2 ),

B8 = −1

6
(−8t2 + 8V1 + 8V2 − Jz1 ),

B9 = −1

6
(8|t2|+ 8V1 + 8V2 + Jz1 + 2|Jxy1 |),

B10 = −2t2
3
− 5

3
(V1 + V2) +

Jz1
12

+
Jz2
4

− 1

12

q
(−8t2 + 4(V1 + V2) + Jz1 − 3Jz2 )2 + 192t21.

The ferromagnetic state has e(F)
0 = e2 and the correspond-

ing bounds can be derived in an analogous way.
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The number of eigenvalues and bounds in the case n = 4
is too large to be listed here. They can be found in [20].
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